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Building a better snail: Lubrication and adhesive locomotion
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Many gastropods, such as slugs and snails, crawl via an unusual mechanism known as adhesive
locomotion. We investigate this method of propulsion using two mathematical models: one for
direct waves and one for retrograde waves. We then test the effectiveness of both proposed
mechanisms by constructing two mechanical crawlers. Each crawler uses a different mechanical
strategy to move on a thin layer of viscous fluid. The first uses a flexible flapping sheet to generate
lubrication pressures in a Newtonian fluid, which in turn propel the mechanical snail. The second
generates a wave of compression on a layer of Laponite, a non-Newtonian, finite-yield stress fluid
with characteristics similar to those of snail mucus. This second design can climb smooth vertical
walls and perform an inverted traverse. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2102927�
I. INTRODUCTION

Understanding adhesive locomotion, the crawling
mechanism adopted by most marine and terrestrial gastro-
pods provides an interesting challenge for fluid dynamicists,
biologists, and roboticists alike. As a snail propels itself for-
ward, the forces created by muscles in the foot interact with
the substrate through a layer of viscous fluid �pedal mucus�
secreted by the animal. Locomotion is directly coupled to the
stresses generated within this thin film and the dynamic and
material properties of the fluid are intimately involved in the
propulsion mechanism.

It has long been known that muscles along the foot of a
snail drive deformations that propel the animal forward. Ob-
servations of crawling snails show that the moving foot is
divided into alternating bands of translating waves and inter-
waves �see Fig. 1�. These waves have been classified by
Vlés1 as direct waves, propagating in the direction of motion
of the snail, or retrograde waves, propagating opposite to the
snail motion. Rarer forms of movement have also been ob-
served, including diagonal waves, “crawl-step” events,2 and
“galloping,” in which the snail lifts a portion of its body off
the substrate, similar to an inchworm. However, simple di-
rect or retrograde waves predominate in most species; direct
waves are used primarily by terrestrial gastropods while ret-
rograde waves are seen mainly in marine species. It has been
well established, by measuring the distance between marked
points on the foot3 or by anatomical evidence obtained by
flash-freezing crawling snails,2,4 that these waves correspond
to regions of lateral compression in the foot.

It was not until Lissmann’s work in 19465 that biologists

began to uncover the mechanical role of these waves in driv-
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ing propulsion. Lissman proposed that there are a number of
forces involved in snail locomotion, including what he
termed “external sliding friction” in the form of both “drag”
and “slip.” He recognized that differential friction between
the foot and the ground in the wave, and the interwave seg-
ments is required to propel the animal forward. However,
Lissmann also postulated that the distinct friction within
each segment is a result of the snail lifting portions of its
foot, creating a thicker mucus layer in the wave regions.
While this differential friction is indeed necessary for loco-
motion, subsequent studies have shown that the difference
does not arise from geometrical changes in the interstitial
thickness, rather from the unusual properties of the pedal
mucus.

The first person to correctly elucidate the role of the
pedal mucus in locomotion was Denny,6 who characterized
the properties of the mucus of the banana slug, Ariolimax
columbianus. He measured a finite yield stress in the fluid
and proposed that the requisite differential friction arises
naturally if the applied stresses within the mucus in the in-
terwave region remain below the critical yield stress �thus
the fluid acts as an adhesive� while stresses in the wave re-
gion are sufficient to drive a flow. He then quantitatively
compared experimentally measured stresses in pedal mucus
under crawling snails with order of magnitude estimates
based on measured yield stresses of the fluid.4 In Sec. II B
we expand on Denny’s work and present a detailed model of
the stresses generated within the mucus.

In addition to stimulating purely academic interest, ad-
hesive locomotion is inspiring a new paradigm in robotics.
Robotic design frequently looks to biology to gain insight

into the mechanics of locomotion. One can easily argue that
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snail locomotion is slow, slimy, and inefficient and hence
hardly something roboticists should strive to emulate. How-
ever, despite these shortcomings, adhesive locomotion pre-
sents two unique advantages. First, gastropods have only one
foot so they are mechanically simple and very stable, making
mechanical replication far simpler than that required for
higher-order organisms. Second, they are often found in
habitats that are topologically complex; thus they have
evolved means of maneuvering through these challenging
terrains by adhering to substrates, enabling them to crawl
straight up vertical walls and traverse ceilings and over-
hangs. This versatility, in conjunction with new soft actuators
and other recent technological developments in material sci-
ence, is beginning to redirect robotic designs toward compli-
ant machines and crawlers.

In light of these advantages, a few research groups have
designed and constructed mechanical “snails.” Notably, Ito
et al. have built a mechanical “snail” that consists of a series
of electromagnets beneath a soft matrix.7 A layer of viscous
fluid is deposited on the soft substrate and a rigid “snail” is
placed on top of the fluid. The magnets then are activated in
sequence, creating an out-of-plane wave in the substrate that
in turn drives the crawler. However, this design is not ideal,
as it is not the “snail” that generates the waves, rather the
substrate. More recently, Mahadevan et al.8 carried out a
series of experiments using soft hydrogel crawlers to inves-
tigate the origin of various crawling gaits. Forward motion in
their experiments arises due to differential friction supplied
by angled incisions in the gel. However, as in Ito’s setup, the
substrate provides the propulsive energy rather than the
crawler, in this case through externally supplied vibrations.

In this paper, we pursue two paths in analyzing gastro-
pod locomotion. First, we construct a mathematical model
that describes the thin fluid layer between the foot and the
substrate and demonstrates that, under certain conditions, the
stresses in this layer can lead to locomotion. Two separate
analyses are carried out for the case of retrograde and direct
waves, respectively. Second, to verify the effectiveness of
our proposed propulsion systems, we build two mechanical
snails, as depicted in Fig. 2: one using direct waves and one

FIG. 1. �Color online�. Photograph of the underside of Limax maximus,
commonly known as the giant leopard slug, showing wave and interwave
segments. Waves propagate in the direction of locomotion, i.e., locomotion
is driven by direct waves.
using retrograde waves. The direct wave crawler replicates
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much of the versatility exhibited by live snails and is capable
of climbing vertical planes and crawling in an inverted posi-
tion. The performance of both mechanical snails is compared
with model predictions.

II. PROPOSED MECHANISMS AND MATHEMATICAL
MODELS

A. Retrograde waves

Locomotion via retrograde waves can be simply induced
by out-of-plane waves generated on the underside of the
foot. It is likely that, should marine snails crawl via the ret-
rograde mechanism described herein, it would be used in
conjunction with an adhesive type of locomotion similar to
that described in Sec. II B. However, the retrograde mode
proposed in this section can be used exclusively in develop-
ing mechanical crawlers, as described in Sec. III A, and the
analysis simplifies considerably if we consider the two
mechanisms separately. The propulsive power from this type
of wave is generated in a manner analogous to a peristaltic
pump and the physical mechanism can be simply understood
as follows. As the lowest point in the wave ��A� in Fig. 3�,
moves backward, viscous fluid to the left of the wave is
squeezed into a narrow gap, resulting in a local increase in
pressure. Conversely, at the back of the wave, fluid flows

FIG. 2. �Color online�. Photograph of two prototype mechanical crawlers.
�a� Retrograde crawler �details in Sec. III A�. �b� Direct crawler �details in
Sec. III B�. The direct crawling device is capable of climbing a vertical wall
and performing an inverted traverse.

FIG. 3. Schematic illustration of out-of-plane waves, in the laboratory

frame, and in the wave frame, generated in a retrograde crawler.
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unobstructed into a widening gap, resulting in a decrease in
pressure. These two pressures, acting normal to the interface,
result in a net force opposite to the direction of wave
propagation.

To calculate the velocity of the snail, we first move into

a reference frame moving with the wave such that ĥ= ĥ�x̂�,
i.e., the shape of the foot is no longer time dependent �see
Fig. 3�. We consider a two-dimensional crawler that is peri-

odic in x̂. Here V̂s is the snail velocity as measured in the lab

frame and V̂w is the wave velocity as measured in the snail
frame. Ultimately we would like to answer the following
question: Given a motor that can drive a deflection at speed

V̂w in the mechanical foot, how fast will the “snail” go?
Unlike the direct wave mechanism described in Sec. II B, the
simplest retrograde crawler can operate on a Newtonian fluid
that we will assume in our model. If the average gap thick-

ness, Ĥ, is much smaller than the wavelength, �, we can use
a standard lubrication approximation �e.g., Ref. 14� to model
the interstitial fluid. The conservation of momentum in the x̂
and ŷ directions are given by

�p̂

�x̂
= �

�2û

�ŷ2 ,
�p̂

�ŷ
= 0, �1�

where p̂ is pressure, � is the viscosity, û is the velocity in the
x̂ direction, and overcarets denote dimensional quantities.
Here we have also restricted our analysis to the limit of small
Reynolds number �as is appropriate for snails�. Rescaling the

variables as follows: x̂=�x, ŷ= Ĥy, û= V̂wu, p̂=��V̂w / Ĥ2p,

ĥ= Ĥh, and V̂s= V̂wVs, the x-momentum equation becomes

dp

dx
=

�2u

�y2 �2�

subject to the boundary conditions u�0�=1−Vs and u�h�=1.
Integrating twice, we find

u�x,y� =
1

2

dp

dx
y�y − h� + Vs� y

h
− 1� + 1. �3�

At steady state, the volume flux per unit width through a
plane normal to the substrate, Q=�0

hu dy, must be constant
for all x. Integrating �3� from 0 to h and solving for the
pressure gradient, we find

dp

dx
=

12

h3�h�1 −
1

2
Vs� − Q	 . �4�

Since h�x� is periodic with wavelength 1, p�1�= p�0�, which
may be used to solve for the unknown constant Q.
Specifically,



0

1 dp

dx
dx = p�1� − p�0� = 0. �5�

Integrating �4� over one wavelength, applying condition �5�,

and solving for Q, we find
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Q = �1 −
1

2
Vs� I2

I3
, where Ij = 


0

1 dx

hj . �6�

Hence, given the wave shape, h�x�, we can compute the di-
mensionless flux, Q, which in turn gives us the pressure gra-
dient, dp /dx and the fluid velocity profile, u�x�.

Finally, to find the velocity of the snail we perform a
force balance on the foot. The traction acting on the foot is
F= �̂ · n̂, where �̂ is the dimensional fluid stress tensor and n̂
is the unit outward normal to the foot. Integrating over x and
applying force balance on the entire snail in the x

direction9–11 to lowest order in Ĥ /� yields �in dimensionless
form�



0

1

p
dh

dx
+ � �u

�y
�

y=h
dx = 0. �7�

Recall that we have already assumed that the snail does not
accelerate but travels at a steady velocity, Vs. The first term
in the integral represents the pressure forces acting normal to
the foot and the second represents viscous drag. Integrating
the first term by parts and substituting �4� for dp /dx, we find

3QI2 = �3 − 2Vs�I1. �8�

Finally, using the expression for Q from �6� and defining a
shape function,

A �
I2

2

I1I3
, �9�

we find an expression for the velocity of the snail,

Vs =
6�1 − A�
4 − 3A

. �10�

Thus, given the shape of the deformations in the foot, we can
predict the velocity of the animal.

It is straightforward to modify the above calculation to
include an inclined substrate and determine whether our me-
chanical snail is capable of climbing a near-vertical wall.
Adding the gravitational body force into Eq. �7�, we find

− W sin � = 

0

1

p
dh

dx
+ � �u

�y
�

y=h
dx , �11�

where � is the angle of inclination measured from the hori-

zontal, W= Ĥmg /�V̂w�b is a dimensionless weight param-
eter, g is gravity, m is the mass of the crawler, and b is the
width of the crawler in the z direction. Solving for the snail
velocity, we find

Vs =
6�1 − A�
4 − 3A

−
W sin �

I1�4 − 3A�
. �12�

Thus the tangential force balance indicates that the snail can
crawl up any surface, provided 6�1−A��W / I1. However, it
is important to note that the normal force balance limits our
snail’s climbing capabilities to inclinations of ��� /2 i.e.,
the crawler cannot traverse an overhang nor can it crawl up a
truly vertical surface. Since there is no normal force adhering

the crawler to the substrate, it cannot retain contact with a
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vertical wall, in contrast to the adhesive mechanism de-
scribed in the next section.

B. Direct waves

Adhesive locomotion via direct waves was first correctly
described by Denny4,6 in an article in which he answers the
thought-provoking question “How can an animal with only
one foot walk on glue?” The analogy of a kink propagating
across a carpet, often used to describe the motion of disloca-
tions, is equally apt here. To propel itself forward, the snail
uses its muscles to initiate a small region of compression at
the tail �the “kink”�. This compressed region then travels
from the tail to the head along the foot �the “carpet”�. When
it reaches the head, the snail once more extends to its full
length, shifting the entire animal forward.12,13

Denny4 correctly postulated that this mode of locomo-
tion requires that the forces generated by the moving portion
of the foot must be offset by the adhesive forces under the
interwave portions stating “a gastropod will move forward if
the reactive force beneath the stationary parts of the foot �the
interwaves� is sufficient to offset the frictional force due to
the movement of the waves and the rim.” That is if the ad-
hesive forces do not exceed the shear forces, the entire snail
will simply slip backward as the wave propagates forward,
resulting in no net translation. Denny also correctly identified
the source of this differential friction, arguing that the
muscles in a snail are not strong enough to lift the foot and
generate a variable gap thickness, therefore the difference
must result from a change in the properties of the pedal mu-
cus in the wave and interwave regions. This change is re-
flected in the finite yield stress of the mucus. In regions
where the foot is shearing the fluid sufficiently, namely the
wave regions, the applied stress exceeds the critical yield
stress and drives a flow; in the interwave regions, the fluid
does not yield, effectively gluing the foot to the substrate.

To relate the externally applied stresses and the proper-
ties of the pedal mucus to locomotion, we first compute the
velocities and pressures within the fluid. We consider a flat

foot on top of a fluid layer of thickness, Ĥ, with periodically
alternating wave and interwave regions �see Fig. 4�. As with
the retrograde crawler, we restrict our analysis to two dimen-
sions with periodic variations in x̂. In the interwave, the fluid
is stationary. In the wave region, of length Lw, where the
muscles are compressed, the foot drives the upper boundary

ˆ ˆ ˆ

FIG. 4. Schematic illustration of the interstitial fluid of a direct wave
crawler with ŷ vs the xy component of stress, �̂, plotted on the right.
of the fluid forward with surface velocity Vs�x , t�. The
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boundary between the wave and interwave moves forward

with a velocity V̂w. Note V̂w and V̂s�x̂ , t̂� need not be the same
velocity and the compatibility condition relating the two to
the motion of the snail as a whole can be constructed as
follows.

First, we sketch the geometry of the contraction wave on
the space–time plane �Fig. 5�. The instantaneous velocity of
the foot in the contraction wave is fixed in the frame moving

with the wave V̂s= V̂s�x̂− V̂wt̂�� V̂s��̂�, where �̂ is the space
coordinate in the moving frame. If Lw and LI denote the
lengths of the contraction wave and interwave, then the time
taken for the wave and interwave to pass a fixed point of

reference are t̂w
fixed=Lw / V̂w and t̂I=LI / V̂w, respectively. How-

ever, a particular material point in the foot prolongs the in-
terval t̂w, it spends in the contraction wave as a result of its
own motion, i.e., t̂w� t̂w

fixed. Over this extended interval, the

point on the foot jumps a total distance X̂w. Consequently, the
snail speed must be given by

V̂snail =
X̂w

t̂w + t̂I

, �13�

where X̂w=�0
t̂wV̂s�x̂− V̂wt̂�dt̂. From Fig. 5 we see that the time

interval spent by a point on the foot in the contraction wave

is t̂w= �Lw+ X̂w� / V̂w. Similarly, t̂I=LI / V̂w. Hence

V̂snail =
V̂wX̂w

X̂w + Lw + LI

. �14�

If V̂* is a characteristic value of V̂s��̂�, then X̂s
 V̂*t̂w, and we

FIG. 5. A space–time plane showing the progression of the contraction
waves and interwaves as they sweep along the snail’s foot. The crooked,
roughly vertical dotted lines denote the world lines of material points on the
foot. The lengths of the contraction wave and interwave, Lw and LI, respec-
tively, are indicated, as are the time intervals that each material foot point
spends in each �t̂w and t̂I, respectively�. The displacement incurred after the

passage of each contraction wave is X̂w, as illustrated.
estimate
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V̂snail 

V̂wV̂*

V̂w�1 + R� − RV̂*

, �15�

where R=LI /Lw is the ratio of the size of the interwave seg-
ment to the wave segment. As we shall see, this number
cannot be arbitrarily changed as LI must be sufficient to pre-
vent the snail from slipping backward. As expected, the

larger the characteristic foot speed, V̂*, the greater the snail
speed. For typical land snails, surface velocities are approxi-
mately two times faster than the animal.

Returning to the stresses generated in the mucus layer, in
the wave region, conservation of momentum of the fluid is
given by

�̂p̂ = �̂ · �̂ , �16�

where p̂ is the pressure and �̂ is the deviatoric stress �again
overcarets indicate dimensional variables�. To model the in-

terstitial fluid, we again assume that Ĥ /Lw	1 and, unlike
the retrograde case, this thickness does not vary with x̂. Any
spatial variations in the flow field are driven by local varia-
tions in the surface velocity. We model the mucus as a
Herschel–Bulkley fluid, which captures the property of both
a finite yield stress and a shear-dependent effective viscosity.
Such a fluid, in the lubrication limit, is governed by the
following constitutive law, relating the xy component of the
stress tensor, �̂, to the strain rate, 
̇=�û /�ŷ, the yield stress,
�0, the consistency, �, and the power law index, n,

�̂ = ��0 + ��
̇�n�sgn�
̇� , �17�

when ��̂���0. If ��̂���0, there is no shear in the layer,

namely �û /�ŷ=0. Rescaling by û=n / �n+1�Ĥ�2�0 /��1/nu, ŷ

= Ĥy, x̂=Lwx, p̂=Lw / Ĥ�0p, and applying a lubrication ap-
proximation as before, we find that the pressure does not
vary across the depth, i.e., p̂= p̂�x̂ , t̂�, and that the velocity is
governed by one of two relations depending on whether the
local stress exceeds the yield stress of the fluid;

��̂� � �0:
�p

�x
=

�

�y
��1 + 2� n

n + 1

�u

�y
�n�sgn�
̇�	 , �18�

��̂� � �0:
�u

�y
= 0, �19�

where we have neglected terms of order Ĥ /Lw and higher.
Since the fluid is incompressible and the thickness of the

layer does not change, the net flux through any cross section
perpendicular to the foot must be the same at any position, x.
In the interwave regions, this flux is zero since the fluid is
stationary. Therefore, the net flux in the wave region must
also be zero. This is only possible if there exists a positive
pressure gradient within each wave segment that pushes fluid
backward somewhere in the layer as the foot drags fluid near
the top forward. Thus the velocity profile can be divided into

three parts, as shown in Fig. 4: region A at the top �Ŷ+� ŷ

� Ĥ�, where the flow is parabolic �for n=1� and pulled for-

ward by the foot; region B �Ŷ−� ŷ� Ŷ+� consisting of a
ˆ ˆ
backward pseudoplug flow; and region C �0�y�Y−�, again
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parabolic �for n=1�, connecting the no-slip boundary condi-
tion at the substrate to the backward plug flow. As we shall
see, region B is not a true plug flow, as the velocity and the
position of the yield surfaces vary slowly with x. Hence we
refer to the region as a pseudoplug rather than a true plug.15

We now solve for the flow field in each region beginning
with A. In this region, 
̇�0 and ��̂���0. Solving �19� with
boundary conditions u=up and �u /�y=0 at y=Y+, we find
the velocity, uA is given by

uA = �1

2

dp

dx
�1/n

�y − Y+��n+1�/n + up. �20�

In region B, ��̂���0; thus the velocity field is not a function
of y. Hence

uB = up. �21�

In region C, 
̇�0 and ��̂���0. Applying the boundary con-
ditions u=up and �u /�y=0 at y=Y− we obtain

uC = �1

2

dp

dx
�1/n

�Y− − y��n+1�/n + up. �22�

The four unknowns in the system are now dp /dx, up �the
velocity in the pseudoplug region�, and the dimensionless
positions of the yield surfaces, Y+ and Y−. To solve for these
unknowns we apply conservation of mass, boundary condi-
tions at y=1 and y=0 �which have not yet been enforced�,
and a yield condition. Applying the boundary conditions
u�y=0�=0 and u�y=1�=Vs we find our first two conditions

�1

2

dp

dx
�1/n

Y−
�n+1�/n + up = 0, �23�

�1

2

dp

dx
�1/n

�1 − Y+��n+1�/n + up = Vs, �24�

where Vs is the dimensionless surface velocity. If the dimen-

sional surface velocity is written as V̂s=V0f�x̂ , t̂�, where V0 is
the maximum surface velocity in the wave region; then

Vs = f
n + 1

n � V0
n�

2�0Ĥn�1/n

�
n + 1

n
Bn

−1/nf , �25�

where Bn is the Bingham number and represents a dimen-
sionless yield stress.

By conservation of mass we know that the total flux Q,
through a surface perpendicular to the foot, must be zero. In
the wave, Q=QA+QB+QC=0, where Qi is the flux in region
i. Integrating Eqs. �20�–�22� in y and rearranging, we find
our third condition

Y−
�n+1�/n =

n

2n + 1
��1 − Y+��2n+1�/n + Y−

�2n+1�/n� . �26�

Finally, �̂ is a linear function of height with slope dp̂ /dx̂.
Considering the slope of the line in the stress plot in Fig. 4,

we find our final yield condition dp̂ /dx̂=2�0 / ĥp, where ĥp

= Ŷ+− Ŷ−, is the dimensional thickness of the plug region, or

in dimensionless form,
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dp

dx
�Y+ − Y−� = 2. �27�

Equations �23�, �24�, �26�, and �27� can now be com-
bined to solve for the four unknowns: dp /dx, up, Y+, and Y−.
After some algebra, the system can be reduced to a single
transcendental equation for Y− with the dimensionless sur-
face velocity �or equivalently, the Bingham number� and the
power law exponent as the only remaining parameters:

Y−
�n+1�/n��2n + 1

nY−
− 1��n+1�/�2n+1�

− 1	
= Vs�1 − Y−�2n + 1

nY−
− 1�n/�2n+1�

− Y−	1/n

. �28�

The real solutions to this equation as a function of Vs �or
equivalently Bn�, along with up=−� 1

2dp /dx�1/nY−
�n+1�/n, the

surface stress, �s, and Y+=1−Y−��2n+1� /nY−−1�n/�2n+1� are
all plotted in Fig. 6 for various n. As expected, for large
surface velocities �or small yield stress�, the yield surfaces
come together and the velocity profiles approach the New-
tonian parabolic solution. As the surface velocity becomes
small �or yield stress becomes large�, the majority of the
fluid resides in the pseudoplug, moving slowly backward
with small shear layers near the top and bottom surfaces.

Now that we have expressions for pressures, yield sur-
faces, and stresses in terms of the surface velocity, we can
return to real space and construct the full solution in the gap.
Switching to a frame following the wave, the surface veloc-
ity becomes a function of � only, i.e., Vs= �n+1� /nBn

−1/nf���.
So, within a contraction wave, the surface velocity �dictated
by the local foot speed�, starts at Vs=0 at the one end of the
wave and achieves a maximum velocity, Vs= �n+1� /nBn

−1/n,
somewhere in the middle, then drops back down to Vs=0.
For example, if f���=16�2�1−��2, we arrive at the yield sur-
faces shown in Fig. 7. Note that it is most expeditious to

FIG. 6. The scaled pseudoplug velocity, up, surface stress, �s, and the yield
surfaces, Y+ and Y−, as functions of the dimensionless surface velocity, Vs,
for power law indices of n=1/3, 1 /2, 1, and 2.
FIG. 7. Yield surfaces in real space for varying Bn and n.
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solve for � explicitly in terms of Y−, rather than implicitly
solve for all the variables in terms of �.

III. DESIGN AND IMPLEMENTATION OF MECHANICAL
CRAWLERS

To test the efficacy of these mechanisms, two robotic
snails, one retrograde �Robosnail I� and one direct �Robos-
nail II�, were designed and constructed. Unlike previously
developed mechanical snails,7,8 both snails possess self-
contained crawling mechanisms and do not require energy
input from the substrate. As we shall see, the mechanics of
retrograde versus direct crawling is quite different, hence
each snail is uniquely suited to quite different environments.

A. Retrograde crawler

Robosnail I, our prototype retrograde crawler, has a solid
polycarbonate body, as shown in Fig. 8. The motor, powered
by an external dc power source, is capable of supplying 1.5,
3.0, and 4.5 V, and is connected to a variable-speed gearbox.
A toothed pulley connects the gearbox to a shallow brass
helix that passes through an array of aluminum sheets perfo-
rated with slots. Each of the sheets is constrained to vertical
motion as they ride in the equally spaced slots along the
body. The bottom edges of the aluminum sheets are glued
onto a flexible foam sheet. When the helix is spun by the
motor and gearbox, it causes the plates to translate up and
down inside their tracks in a traveling sinusoidal wave �evi-
dent when viewed from the side�. As described in Sec. II A,
this sinusoidal wave generates regions of high pressure in
front of the wave where the fluid is squeezed into a narrow
gap, and regions of low pressure behind the wave where the
fluid is allowed to expand. These pressures generate forces
normal to the interface, driving the snail in the opposite di-
rection of the wave.

A test track slightly larger than the width of the snail,
constructed to minimize the leakage of fluid past the open
sides of the foot, was filled with a 5 mm thick layer of glyc-
erol and Robosnail I was activated on top of the layer. After
the motion reached steady state, measurements of wave
speed and snail speed were recorded. The velocities achieved

FIG. 8. Design of the retrograde crawler consisting of a shallow spiral
threaded through a series of aluminum sheets attached to a rubber foot. The
rigid sheets drive a sinusoidal wave in the flexible foot, propelling the
crawler forward.
by Robosnail I as a function of wave speed are shown later in

P license or copyright, see http://pof.aip.org/pof/copyright.jsp



113101-7 Building a better snail Phys. Fluids 17, 113101 �2005�
Fig. 11�b�. As predicted, the snail velocity scales linearly
with the wave velocity. It is simple to verify that the loco-
motion is indeed driven by stresses generated within the fluid
layer; when the crawler is activated on a dry surface it moves
slowly in the direction of wave propagation opposite to what
is predicted and observed when the fluid layer is present.
This simple test underscores the importance of the thin fluid
film in the propulsion mechanism.

Taking a best fit of the data in Fig. 11�b�, and using Eq.
�10� with a sinusoidal wave profile, we predict an average

gap thickness of Ĥ= �1.9±0.1�â, where â=1 mm. Interstitial
heights were not directly measured and, although this esti-
mate is quite reasonable, it is likely that the model slightly
overpredicts the gap thicknesses achieved experimentally.
Despite the narrow track, there was considerable leakage out
the side of the foot as the crawler progressed, reducing the
effective pressures within the gap. Hence, we expect the
mathematical model to overestimate the speed of the me-
chanical crawler or equivalently overestimate the gap
thickness.

B. Direct wave crawler

Robosnail II was built to mimic the direct wave, adhe-
sive locomotion of land snails. Unlike real snails, which have
one continuous foot of muscle, the foot of Robosnail II is
made up of five discrete, sliding sections �see Fig. 9�. Each
of the five sections move forward along a track by a small
fixed amount, 
L, relative to the body. After all five seg-
ments have advanced, the body slides forward, returning the
segments to their original positions. These small motions oc-
cur in sequence, as illustrated in Fig. 10.

The prototype consists of five Nitinol wires attached to
nylon cords wrapped 180° around a pulley and tied to five
sheets of polycarbonate �see Fig. 9�. Each of the sheets is
attached to a pair of guides that allow only fore–aft transla-
tion. A leaf spring held by the main body returns each of the
sheets to its original position when there is no other force
present. The springs supply the restoring forces necessary to

FIG. 9. Design of the direct crawler that uses shape memory alloy wires to
activate a compression wave along the underside of the foot.
return the wires to their outstretched positions. The wires are
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crimped in loops at the ends; one end is tied to the cords
controlling the foot, and the other end of each wire is looped
around adjustable brass fasteners to allow proper tightening
of the wire and cords. It was important for the wires to be
correctly tensioned such that the springs succeed in restretch-
ing the wires, but not so tight as to limit the motion of the
foot segments. The tightness adjustment is achieved by turn-
ing the screws through which the wire mounts are threaded.

Laponite16,17 was used as a lubricating fluid, chosen for
its finite yield stress and ready availability. To test the wall
climbing ability of Robosnail II, we mounted it on a tiltable
platform covered in a 1.5 mm thick layer of Laponite. Since
Laponite has a yield stress of 100 Pa, this gives us an ap-
proximate Bingham number of Bn
O�1�, which corre-
sponds to a surface velocity of order Vs
O�1�. The tilt
angle, �, was measured from the horizontal. Here �=� /2
corresponds to a vertical wall; angles greater than � /2 indi-
cate that the snail crawls up an overhang in an inverted po-
sition; �=� corresponds to a fully inverted traverse. Robo-
snail II was able to climb the Laponite-coated surface tilted
at any angle, including both a vertical and fully inverted
position.

Experimental data shows that the motion per cycle is in
all cases slightly less than the translation of one foot, 
L

= X̂w. Ideally, if there is no backward slip, the crawler dis-

placement per cycle, D, should be X̂w. However, data in Fig.
11�a� shows that there is some slippage at all inclinations,
with the maximum occurring around ��3� /4 when gravity
is working to oppose both the direction of motion and the
normal force that contributes to adhesion. At high tilt angles,
much of the adhesive force of the Laponite supports both the
weight of the snail and the resistance supplied by the inter-
wave sections, while at near-flat angles near 0 and �, the
adhesive force is required primarily to resist the friction on
the moving foot. Thus, we expect a minimum displacement
somewhere between � /2 and �, as is observed in the experi-
ments, when gravity works to decrease traction and to in-
crease the resistive force of the weight.

The slipping of the stationary sections could be attrib-
uted to a number of phenomena. Neither the Laponite layer
nor the foam rubber of the crawler’s foot sections is perfectly
flat and imperfections in the thickness of the Laponite layer
could perturb the local stress field driving a flow. Another
likely cause for slippage is that the Laponite under the sta-
tionary sections may not have had enough time to resolidify.
Once the Laponite has yielded, the microstructure reforms
gradually, hence the effective yield stress after flowing is less

FIG. 10. Activation sequence for the direct crawler.
than it was immediately before yielding. Only after a char-
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acteristic “healing” time does the yield stress return to its
original value. This last problem can be remedied by increas-
ing the time of each cycle, allowing the Laponite to reso-
lidify at the expense of slowing down the translational speed
of the snail. Finally, it was observed that there was delami-
nation of the Laponite layer from the segments of the foot,
decreasing the traction of the stationary foot segments.

IV. DISCUSSION

It is clear that the two different crawling mechanisms we
have investigated are ideally suited to very different types of
terrain. The retrograde crawler that uses peristaltic forces
rather than adhesive forces cannot climb vertical walls. How-
ever, it has the advantage of being insensitive to the fluid
properties and thus can easily maneuver over mud or other
mushy surfaces. In contrast, the direct wave crawler can
traverse extremely complex topologies including climbing
vertical walls and traversing overhangs in an inverted posi-
tion. The tradeoff for this versatility is that the mechanical
crawler has very specific requirements regarding the intersti-
tial fluid properties. In particular, in order to perform these
complex maneuvers, the yield stress of the fluid must be
sufficient to support the weight of the crawler. The math-
ematical models discussed in Secs. II A and II B give us
some insight as to how to design crawlers to maximize their
versatility and minimize the drawbacks outlined above.

A. Exact solutions and optimal wave profiles for the
retrograde crawler

The optimization questions that arise in designing retro-
grade crawlers are primarily geometric. Ideally we would
like to know how to change the shape of the deformations in
the foot to optimize various quantities such as speed and
efficiency. We begin by investigating the limit of both small-
and large-amplitude deformations �see Fig. 12�.

For small wave amplitudes we consider h�x�=1+a��x�,
where �̄=0, and the overbar indicates an x average. Taylor
expanding the integrands in �9� we find the shape function A
becomes

A =
�1 + 3a2�2�2

�1 + a2�2��1 + 6a2�2�
. �29�
This gives, to lowest order, a snail velocity of
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Vs = 6a2�2. �30�

Thus, the snail speed is maximized for profiles that make the
average of �2 as large as possible �recall that the surface
velocity, Vs is the same as the snail velocity, Vsnail, in the
retrograde crawler�. Square-wave-type profiles accomplish
such a maximization while sharp jagged profiles do the worst
job.

As the wave amplitude becomes large, the snail foot
nearly touches down on the plane beneath and locally, h
�h*+ ��2h* /�x2��x−x*�2 /2. The Ij integrals then become
dominated by local contributions near x=x* and reduce to
derivatives of Lorentzians:

I1 
 �� 2

h*��2h*/�x2�
, I2 


1

2h*
I1, I3 


3

8h*
2 I1. �31�

Hence, A→2/3 and so V→1. In other words, for any profile
with a generic parabolic minimum, when extended near the
underlying plane, the foot acts like a caterpillar tread and
drives the snail at the wave speed.

In addition to these important limits, there are several
special cases for which the crawler velocity can be exactly
computed. For a sinusoidal deformation, the integrations in A
can be performed analytically. If the gap thickness is given

FIG. 11. �a� Experimental data show-
ing slippage of the direct crawler as a
function of inclination angle. The y
axis indicates a dimensionless dis-

placement, D / X̂w, where D / X̂w=1 cor-
responds to no slippage. �b� Experi-
mental data of the retrograde snail

velocity, V̂s, vs wave velocity, V̂w. As
expected, the snail velocity scales lin-
early with the wave velocity; the slope

corresponds to a gap thickness of Ĥ
= �1.9±0.1�â. Characteristic error bars
are shown in both plots; vertical error
bars are smaller than the symbols in
�b�.

FIG. 12. Dimensionless snail speeds for different wave profiles. The square-
wave-like profile is given by �=tanh 12 cos�2�x�, and the sawtooth-like
profile by a Fourier series truncated at 16 terms. The spiky, sharp profile was
built using the function exp�−6�1+cos 2�x�. The dotted lines show the
initial parabolic behavior; the dashed lines show the sawtooth and square

wave snail velocity as a function of wave amplitude.
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by h�x�=1−a cos 2�x in dimensionless form �or equiva-

lently ĥ�x̂�= Ĥ− â cos �2�x̂ /���, the integrals in �9� become
I1= �1−a2�−1/2, I2= �1−a2�−3/2, and I3= �2+a2� /2�1−a2�5/2,
resulting in a simple expression for snail speed,

Vs =
3a2

1 + 2a2 . �32�

Since the dimensional amplitude of the wave, â, cannot ex-

ceed the average gap thickness, Ĥ, a�1. Here Vs as a func-
tion of a is plotted in Fig. 12. We find that, for a sinusoidal
deformation, the snail velocity monotonically approaches the

wave speed, i.e., V̂s→ V̂w, as â→ Ĥ.
Two other analytical examples �not necessarily realiz-

able, though� are the square wave and sawtooth, for which

I1 =
1

1 − a2 , I2 =
1 + a2

�1 − a2�2 , I3 =
1 + 3a2

�1 − a2�3 , �33�

and

I1 =
1

2a
log�1 + a

1 − a
�, I2 =

1

1 − a2 , I3 =
1

�1 − a2�2 , �34�

respectively. It is easy to see that the square wave does well
near a=0 since it has a large average of �2, but does poorly
as a→1, where the sawtooth is better. A comparison between
the sinusoidal, square-wave-like and sawtoothlike profiles is
shown in Fig. 12. Also shown is a spiky, sharp profile built
using the function exp�−6�1+cos 2�x�. Clearly there is a
tradeoff between a preference for squarer profiles at low am-
plitude, to profiles with sharp minima at large amplitude. It is
also possible for the snail to be driven faster than the wave
for the latter-type profiles. �Note that the smooth profiles
swerve sharply near a=1 to give the expected result for pro-
files, with parabolic minima as a→1.� Obviously, this limit
is a bit artificial, since the profile cannot be too sharp without
violating the lubrication assumption. Analytic and approxi-
mate solutions are summarized in Table I.

We can now also determine if the crawler can climb a

TABLE I. Summary of snail velocities, Vs, and shape functions, A, for
various wave profiles. The top two represent generic small and large ampli-
tude waves, respectively; the bottom three are exact solutions for a sinu-
soidal, square wave, and sawtooth profile. In the sawtooth expressions, M
=ln��1+a� / �1−a��.

Profile A Vs

h�x�=1+a��x� �1−a2�2 �6a2�2

h�h*+h*��x−x*�2 /2 →2/3 →1

h�x�=1−a cos 2�x 2

2+a2

3a2

1+2a2

Square wave �1+a2�2

1+3a2

6a2�1−a2�

1+6a2−3a4

Sawtooth 2a

M

3�M −2a�

2M −3a
near-vertical slope. For a sinusoidal deformation, the snail
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can climb a wall if 6�1−2/ �2+a2���W�1−a2. Note that the
gravitational sliding can always be dominated by the forward
motion if a→1.

It is also interesting to compare this solution to that ob-
tained by Taylor18 for a free-swimming undulating sheet.
Taylor’s sheet, which has fluid on both sides and does not
interact with a bounding wall, displays the same scaling with

amplitude as â→0, namely V̂s� â2. For a periodic wave pro-
file, and a wall parallel to the crawler, we can solve the full
biharmonic problem without making the lubrication assump-
tion by decomposing the wave profile into a Fourier series
�as in Taylor’s article�. It is fairly straightforward to show
that the first term of the asymptotic series in wave amplitude
cannot contribute to driving the snail, and so V
O�a2�, wide
or narrow fluid layers alike.

B. Optimized design of direct crawlers

In the direct crawler, it is clear that the interwave seg-
ments play a critical role in adhesive locomotion. As we have
seen, without the resistance provided by the interwave re-
gions, the snail slips backward as the waves move forward
resulting in no net translation. Hence the maximum allowed
wave speed is directly related to the interwave area. We can
now use the relations derived in Sec. II B to design the ap-
propriate ratio of wave and interwave areas in a mechanical
crawler given a fluid with known properties �or conversely,
given a snail foot, we can calculate the minimum required
Bingham number for the fluid�. If the adhesive crawler is
restricted to a flat surface, the yield stress needed to keep
snail from sliding backward is limited by �0LI

��wave�̂��̂ , Ĥ�d�̂, where LI is the interwave length and the
integration is performed along the underside of the foot in

the wave region. If the surface velocity is symmetric in �̂, we
can change the integration variable to Vs and write the crite-
rion in dimensionless form as

LI

Lw
� 2B1/n n

n + 1



0

1

�s�Vs�
dVs

f��Vs�
, �35�

where, as before, V̂s=V0f���Vs��. The surface stress, �s, in
the integrand, is plotted in Fig. 6 or, alternatively, is given by

�s�Vs� = 1 + �n + 1

n
�2ndp

dx
�1 − Y+� . �36�

If the crawler is required to climb a vertical wall, this crite-
rion must be modified to include the weight of the crawler,

namely, �0LI��wave�̂��̂ , Ĥ�d�̂+mg /Nb, where m is the mass
of the crawler, b is the width, N is the number of wave
segments, and g is gravity. In dimensionless form this
becomes

LI

Lw
� 2B1/n n

n + 1



0

1

�s�Vs�
dVs

f��Vs�
+

mg

Nb�0
. �37�

For Robosnail II, the integrals in �37� are particularly simple.
The surface velocity, Vs, is roughly constant in the wave

region, thus

P license or copyright, see http://pof.aip.org/pof/copyright.jsp



113101-10 Chan, Balmforth, and Hosoi Phys. Fluids 17, 113101 �2005�
LI

Lw
� 1 + �n + 1

n
�2ndp

dx
�1 − Y+� +

mg

Nb�0
. �38�

In our mechanical crawler, the right-hand side of Eq. �38�
can easily become dominated by the weight of the snail if
we do not take some care to minimize the weight of the
robot components. Since the yield stress of Laponite is only
about 100 Pa, Robosnail II was designed to be as light as
possible �31.6 g�, hence the choice of Nitinol wires rather
than an on-board motor.

In optimizing direct wave crawlers, evidently there is a
complicated tradeoff between the geometrical design of the
foot and rheological properties of the interstitial fluid. The
larger the foot speed, the smaller the Bingham number and
the higher the shear stress beneath the contraction wave.
Thus, one cannot continue to increase the foot speed and the
shear stress without eventually allowing the fluid beneath the
interwave to yield. Likewise, one loses the anchor of the
interwave if one lengthens the contraction region, Lw, too
much in maximizing “muscle” area to make V0 as large as
possible. In the limit of larger yield stress �or equivalently,
smaller Vs�, the mucus exerts less surface shear stress for
given foot speed if it is shear thickening �n�1�. On the other
hand, in the limit of smaller yield stress �larger Vs�, it is far
more advantageous in this regard if the mucus is shear thin-
ning �see Fig. 6�.

Having built two prototypes and demonstrated the feasi-
bility of propelling crawlers using direct and retrograde
mechanisms, future studies will turn to the challenge of us-
ing the mathematical models to optimize the design of new
crawlers. Again, the issues that arise in retrograde versus
direct crawlers are radically different. As we have briefly
discussed, for retrograde crawlers, an important design focus
is likely to be a geometrical optimization problem, namely,
to derive optimal designs for the shape of the foot and hence
the shape of the traveling wave. In contrast, the optimization
of direct wave crawlers relies heavily on optimizing the ma-
terial properties of the interstitial fluid. An ideal fluid would
have a large yield stress to support the weight of the snail
and it should have a fast heal time to maximize the velocity
of the crawler. As a sample point of reference, we note that
the healing time scale for Laponite is on the order of
minutes17 compared to the heal time for pedal mucus, which
has evolved to be as fast as 0.1 s.6 Clearly there is the po-
tential to vastly increase crawling capabilities through design
Downloaded 25 Apr 2006 to 18.80.6.53. Redistribution subject to AI
and optimization of synthetic fluids. So far, we have not yet
explored the effect of rheology on retrograde crawlers, which
is likely to play a role in addition to the geometric consider-
ations outlined above. Both material and geometric optimi-
zation questions are topics of current investigation.
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